A Message from the Missouri American Water President

To Our Valued Customers:

I am pleased to share good news about the quality of your drinking water. Each year, we provide you with our Annual Water Quality Report – and like so many years prior – we continue to supply water that meets or surpasses all state and federal water quality regulations for about a penny per gallon. We are proud to provide our customers with this exceptional value.

Delivering water requires miles of pipeline, facilities that draw water from the source and water plants where it’s treated and tested. Our plant operators, water quality experts, engineers, and maintenance crews work around the clock to make sure that water is there when you need it. Delivering high-quality, reliable water service to your tap 24/7 also requires significant investment to upgrade aging facilities. In 2014 alone, we invested about $125 million in water system improvements statewide.

We do this because we believe we’re delivering more than just water service. We deliver a key resource for public health, fire protection, the economy and overall quality of life. Our job is to ensure that quality water keeps flowing today, and well into the future. It’s our commitment to you and the communities we serve.

We hope you agree that water is a great value and worth learning more about. This report provides details about the source and quality of your drinking water, using the most recent water quality data for your local water system.

Thanks for allowing us to serve you.

Frank Kartmann
President, Missouri American Water

What is a Water Quality Report?

To comply with state and U.S. Environmental Protection Agency (USEPA) regulations, Missouri American Water issues a report annually describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect drinking water sources. We conduct tests for hundreds of contaminants. This report provides an overview of the most recent water quality data available. It includes details about where your water comes from and what it contains.

If you have any questions about this report or your drinking water, please call our Customer Service Center at (toll-free) (866) 430-0820.
About Missouri American Water

Founded in 1886, American Water (NYSE: AWK) is the largest and most geographically diverse publicly traded U.S. water and wastewater utility company. With headquarters in Voorhees, N.J., the company employs approximately 6,400 dedicated professionals who provide drinking water, wastewater and other related services to an estimated 15 million people in more than 45 states and parts of Canada. More information can be found at www.amwater.com.

Missouri American Water, a subsidiary of American Water, is the largest water utility in the state, providing high-quality and reliable water and/or wastewater services to approximately 1.5 million people.

How to Contact Us

For more information regarding this report or any of the other services provided by Missouri American Water, please call our Customer Service Center at (toll-free) (866) 430-0820, or you may visit us at www.missouriamwater.com.

Source Water Information

Missouri American Water supplies quality drinking water to over 4,800 residential, commercial and industrial customers in the City of Mexico and two adjoining water districts. All of the water treated at the Mexico plant is groundwater drawn from the Roubidoux Formation through deep wells.

Well Head Protection Program

A well head protection plan was voluntarily developed by Missouri American Water’s Mexico District. This program is an excellent example of the company’s commitment to the protection of water resources through proactive programs. This program has also been endorsed and recognized by the Missouri Department of Natural Resources and the Environmental Protection Agency Region 7 Office.

Protecting our Water Quality at the Source

We can all help protect the quality of water coming from our faucets by first protecting the quality of water in our rivers.

We all live in a watershed – an area of land that drains to a waterway. When it rains or snows, water travels across the ground on its journey to a river or stream. Along the way, it picks up any pollutants that may be found on lawns, streets and farmland.

Working together we can minimize these pollutants and protect our rivers, starting with six simple steps.

- Recycle – don’t litter.
- Remember that storm inlets drain to rivers – don’t pour oil or chemicals in the street.
- Plant native plants. They support wildlife, help preserve our natural diversity and require no fertilizer or herbicides.
- Use lawn chemicals sparingly and follow directions.
- Plant a rain garden to capture runoff from rainwater.
- Join a local stream clean-up team.

Missouri American Water supports river clean-ups, watershed protection programs and environmental events across Missouri. In 2014, Missouri American Water’s community outreach program deployed about 336 employee volunteers to more than 40 community events across the state.
Substances Expected to be in Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and groundwater wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

Contaminants that may be present in source water include:

- **Microbial Contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- **Inorganic Contaminants**, such as salts and metals, which can be naturally-occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- **Pesticides and Herbicides**, which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

- **Organic Chemical Contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

- **Radioactive Contaminants**, which can be naturally occurring or be the result of oil and gas production and mining activities.

For more information about the contaminants and potential health effects, call the USEPA’s Safe Drinking Water Hotline at (800) 426-4791.

Special Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the USEPA’s Safe Drinking Water Hotline (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Missouri American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.
To ensure that tap water is of high quality, U.S. Environmental Protection Agency prescribes regulations limiting the amount of certain substances in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

How to Read the Tables

Missouri American Water conducts extensive monitoring to ensure that your water meets all water quality standards. The most recent results of our monitoring are reported in the following tables. Certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting these tables, see the “Definitions of Terms” section.

Starting with a **Substance**, read across. **Year Sampled** is the most recent test year. **MCL** shows the highest level of substance (contaminant) allowed. **MCLG** is the goal level for that substance (this may be lower than what is allowed). **Results** represents the measured amount (less is better). **Range** tells the highest and lowest amounts measured. A **Yes** under **Compliance Achieved** means the amount of the substance met government requirements. **Typical Source** tells where the substance usually originates.

Unregulated substances are measured, but maximum contaminant levels have not been established by the government.

Definitions of Terms

AL (Action Level): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

NA: Not applicable

ND: Not detected

pCi/L (picocuries per liter): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

ppm (parts per million): One part substance per million parts water, or milligrams per liter.

ppb (parts per billion): One part substance per billion parts water, or micrograms per liter.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

Water Quality Statement

We are pleased to report that during the past year, the water delivered to your home or business complied with all state and federal drinking water requirements. For your information, we have compiled tables showing the most recent water quality data available. Although all of the substances listed below are under the Maximum Contaminant Level (MCL) set by the USEPA, we feel it is important that you know exactly what was detected and how much of the substance was present in the water. For additional information concerning our results, please contact our customer service department at (toll-free) (866) 430-0820. Monitoring is also done under the USEPA Unregulated Contaminant Monitoring Rule (UCMR). Data is available on the [USEPA’s web site](http://www.epa.gov).
There are many unforeseen and unpredictable factors that may introduce contaminants into our source water. The Missouri Department of Natural Resources routinely monitors all public water supplies to ensure public health is protected. Source Water Assessments have been assembled by the Missouri Department of Natural Resources to evaluate the susceptibility of contamination to our drinking water sources. For more information about these assessments call the Missouri Department of Natural Resources at (800) 361-4827.

Water Quality Results

Regulated Substances (Water Leaving the Treatment Facility)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MCL</th>
<th>MCLG</th>
<th>Results</th>
<th>Range Low-High</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (ppm)</td>
<td>2014</td>
<td>TT</td>
<td>NA</td>
<td>1.0</td>
<td>1.0 – 2.3</td>
<td>Yes</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Chromium – Total (ppb)</td>
<td>2013</td>
<td>100</td>
<td>100</td>
<td>0.8</td>
<td>ND – 1.3</td>
<td>Yes</td>
<td>Discharge from steel and pulp mills; Erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>2013</td>
<td>4</td>
<td>4</td>
<td>1.3</td>
<td>1.3</td>
<td>Yes</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories</td>
</tr>
</tbody>
</table>

Bacterial Results (In the Distribution System)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Monthly Number of Positives</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria</td>
<td>2014</td>
<td>1 Pos. Sample</td>
<td>0</td>
<td>1</td>
<td>Yes</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

Regulated Substances (In the Distribution System)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MCL</th>
<th>MCLG</th>
<th>Results</th>
<th>Range Low-High</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (ppm)</td>
<td>2014</td>
<td>MRDL = 4</td>
<td>MRDLG = 4</td>
<td>1.6</td>
<td>1.3 – 1.6</td>
<td>Yes</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>HAAS [Haloacetic acids] (ppb)</td>
<td>2014</td>
<td>60</td>
<td>NA</td>
<td>1.3</td>
<td>ND – 1.3</td>
<td>Yes</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>TTHMs [Total trihalomethanes] (ppb)</td>
<td>2014</td>
<td>80</td>
<td>NA</td>
<td>17.7</td>
<td>3.8 – 17.7</td>
<td>Yes</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>

Lead and Copper Results (In the Distribution System)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>Action Level</th>
<th>MCLG</th>
<th>Number of Samples</th>
<th>90th Percentile</th>
<th>Number of Samples Above Action Level</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (ppm)</td>
<td>2013</td>
<td>AL = 1.3</td>
<td>1.3</td>
<td>30</td>
<td>0.07</td>
<td>0</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives</td>
</tr>
<tr>
<td>Lead (ppb)</td>
<td>2013</td>
<td>AL = 15</td>
<td>0</td>
<td>30</td>
<td>1</td>
<td>0</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
</tbody>
</table>
Unregulated Substances (Water Leaving the Treatment Facility)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>Results</th>
<th>Range Low-High</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium – 6 (ppb)</td>
<td>2013</td>
<td>1.0</td>
<td>1.0</td>
<td>Naturally-occurring element; used in making steel and other alloys; chromium-3 or -6 forms are used for chrome plating, dyes and pigments, leather tanning, and wood preservation</td>
</tr>
<tr>
<td>Strontium (ppb)</td>
<td>2013</td>
<td>831</td>
<td>788 – 900</td>
<td>Naturally-occurring element; historically, commercial use of strontium has been in the faceplate glass of cathode-ray tube televisions to block x-ray emissions</td>
</tr>
<tr>
<td>Vanadium (ppb)</td>
<td>2013</td>
<td>0.3</td>
<td>ND – 0.5</td>
<td>Naturally-occurring elemental metal; used as vanadium pentoxide which is a chemical intermediate and a catalyst</td>
</tr>
</tbody>
</table>

Unregulated Substances (In the Distribution System)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>Results</th>
<th>Range Low-High</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium – 6 (ppb)</td>
<td>2013</td>
<td>1.0</td>
<td>0.9 – 1.1</td>
<td>Naturally-occurring element; used in making steel and other alloys; chromium-3 or -6 forms are used for chrome plating, dyes and pigments, leather tanning, and wood preservation</td>
</tr>
<tr>
<td>Chromium – Total (ppb)</td>
<td>2013</td>
<td>1.4</td>
<td>1.3 – 1.4</td>
<td>Naturally-occurring element; used in making steel and other alloys; chromium-3 or -6 forms are used for chrome plating, dyes and pigments, leather tanning, and wood preservation</td>
</tr>
<tr>
<td>Strontium (ppb)</td>
<td>2013</td>
<td>852</td>
<td>843 – 861</td>
<td>Naturally-occurring element; historically, commercial use of strontium has been in the faceplate glass of cathode-ray tube televisions to block x-ray emissions</td>
</tr>
<tr>
<td>Vanadium (ppb)</td>
<td>2013</td>
<td>0.6</td>
<td>0.5 – 0.6</td>
<td>Naturally-occurring elemental metal; used as vanadium pentoxide which is a chemical intermediate and a catalyst</td>
</tr>
</tbody>
</table>